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Abstract

This paper proposes a dynamic output feedback controllers for variable structure systems. It is based on the concept of output
feedback controllers, introduced by Z� ak and Hui (IEEE Trans. Automat. Control AC-38 (1993) 1509) and Kwan (IEEE Trans.
Automat. Control AC-41 (1996) 1691) for matched uncertain variable structure systems in which the state is unavailable and no
estimated state is required. In this paper, we extend this idea to a class of mismatched uncertain variable structure systems. A modi"ed
variable structure controllers is derived to guarantee the existence of the sliding mode by using output feedback only. The stability of
the equivalent reduced-order system in the sliding mode is assured under certain conditions. � 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The theory of variable structure control (VSC) is often
used in controlling of uncertain systems. The main
advantage of VSC exists in the sliding mode, where
the system trajectories are constrained on the predeter-
mined switching surfaces. In the sliding mode, if the
uncertainties and/or disturbances of the system satisfy
the so-called matching condition, the system behavior is
insensitive to the matched internal parameter variations
and external disturbances.
However, if the matching condition is not satis"ed or

the system su!ers from mismatched uncertainties, then
the system behavior in the sliding mode is not only
governed by the switching surface but also determined by
the mismatched uncertainties.

Another major drawback of VSC is that the state
variables have to be accessible. In many practical sys-
tems, the state variables are not accessible for direct
measurement or the number of measuring devices is
limited. Thus, the design of asymptotic observers and
dynamic compensators are very important and have
been established (Bondaref, Bondaref, Kostyleva, &
Utkin, 1985; Emelyanov, Korovin, Nersisyan, & Nisen-
zov, 1992; Diong & Medanic, 1992; Esfandiari & Khalil,
1992; Oh & Khalil, 1995). However, the direct output
feedback design in variable structure systems (VSS) is
worth investigating. Heck and Ferri (1989) proposed
a direct output feedback in VSS by choosing a matrix
such that the system satis"es the reaching condition. Z� ak
and Hui (1993) proposed a static output feedback
method. Some important conditions were given on the
switching surface design. However, two major limitations
of the paper Z� ak and Hui (1993) are di$cult to achieve.
The "rst is, the disturbances are bounded by a known
function of outputs. The second limitation is the exist-
ence of a matrix equation ensuring the sliding condition.
In Kwan (1996), a modi"ed dynamic output feedback
controller for a class of single-input/single-output (SISO)
VSS was proposed. Under certain conditions, the ap-
plicability of output VSS can be greatly broadened. It
should be pointed out that the above papers assume that
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the matching condition is satis"ed. This is to say they
only discuss the controllers design of matched uncertain
VSS.
In this paper, we extend the idea of Z� ak and Hui (1993)

and Kwan (1996) from matched uncertain VSS to a class
of mismatched uncertain VSS. A modi"ed controller
using only output variable is proposed to stabilize the
uncertain system robustly. Here the state is unavailable
and no estimated state is required. We extend the design
of Kwan (1996) from matched SISO systems to mis-
matchedmulti-input/multi-output (MIMO) systems. The
major limitations of the method in Z� ak and Hui (1993) is
also eliminated. Under certain conditions, the stability of
the equivalent reduced-order system in the sliding mode
is assured.

2. Statement of the problem

Consider the following mismatched uncertain systems:

x� "(A#�A)x#B(u#�),

y"Cx,
(1)

where x3R� is the state vector, u3R� is the control input,
y3R� is the output. The term �A represents the mis-
matched uncertainty of the plant which the match-
ing condition is not satis"ed and � symbolizes the
disturbances.
The sliding variable is de"ned as Z� ak and Hui (1993)

�"Fy"FCx"Sx, (2)

where F3R��� is a constant matrix. The matrix
F should be selected to satisfy

FC"S. (3)

The design method to select F and S were given in Z� ak
and Hui (1993). In the sliding mode, the desired distinct,
non-zero, and real negative eigenvalues ��

�
, �

�
,2, �

���
�

can be assigned.
There are twomajor assumptions in the paper Z� ak and

Hui (1993). The "rst is the disturbances are bounded by
a known function of outputs. That is 		�(t)		4
(t, y(t))
with 
 a known function of outputs. This assumption is
quite restrictive. The second assumption is that the con-
dition FCA"MC to guarantee sliding condition �"0.
This condition is di$cult to achieve.
With the above statements, the problems considered in

this paper can be formulated as follows:

(a) Derive certain conditions which guarantee the mis-
matched uncertain system (1) in the sliding mode is
asymptotically stable.
(b) Design a modi"ed output feedback control which

will eliminate the major limitations of the method by Z� ak

and Hui (1993) and extend the method by Kwan (1996)
from matched uncertain case to mismatched uncertain
case.
(c) This controller guarantee; that the state trajectories

of the mismatched uncertain system (1) can reach the
switching surface �"0 in "nite time and stay on it
thereafter.

We assume the following to be valid:

Assumption 1. There exist known non-negative con-
stants k� and k

�
such that 		�		4k�#k

�
		x		.

Assumption 2. The pair (A,B) is controllable.

Assumption 3. The matrix S is existent (Z� ak &Hui, 1993,
Theorem 4.1) and the equation S"FC is solvable (Z� ak
& Hui, 1993, Theorem 4.3).

The notation 		 ) 		 in Assumptions 1 denotes the
Euclidean norm of ( ) ).

3. Stability in the sliding mode

In this section, some conditions are derived such that
the system on the switching surface is stable even though
the matching condition does not hold. First, the results
obtained in El-Ghezawi et al. (1983) and Z� ak and Hui
(1993), which are used to determining the switching sur-
face. By Assumption 2, there exist matrices=3R�������

and N3R��� such that [A#BN]="=J, where
J3R����������� is a freely chosen Jordan matrix which
determines the system dynamics restricted to the switch-
ing surface. The negative and real eigenvalues of
J, �

�
, j"1, 2,2, n!m, are the desired eigenvalues in

the sliding mode. Let �
���

(J) and �
���

(J) denote the
maximum and minimum eigenvalues of J, respectively.
Using procedures of El-Ghezawi et al. (1983) and Z� ak
and Hui (1993), the following assumption is needed.

Assumption 4. The matrix [= B] is invertible.

The inverse [= B] has the form

�
=�

B� �,
where =� and B� denote the generalized inverses of
= and B, respectively. Selecting S"B� and a trans-
formation matrix

MI "�
=�

S � (4)
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with MI ��"[= B]. Then system (1) can be written by

z� "=�(A#�A)=z#=�(A#�A)B�

�� "S(A#�A)=z#S(A#�A)B�#u#�, (5)

where z"=�x and �"Sx.
The following theorem provides a condition that the

mismatched uncertain system in the sliding mode is
asymptotically stable.

Theorem 1. Let 		�A		4k
�
and

P"diag��
���

(J)/�
�
, �

���
(J)/�

�
,2, �

���
(J)/�

���
�. (6)

If

k
�
(!�

���
(J)/(		P=�		 		=		), (7)

then the mismatched uncertain system (1) in the sliding
mode is asymptotically stable.

Proof. In the sliding mode, we have �"0 and �R "0.
De"ne a Lyapunov function candidate <"z�Pz, where
the positive-de"nite matrix P is de"ned in (6). If we
di!erentiate<with respect to time combined with (5) and
use the fact=�A="J, then

<Q "z�(J�P#PJ)z#2z�P=��A=z

4z�(J�P#PJ)z#2k
�
		z		�		P=�		 		=		.

It follows from (6) that

J�P#PJ"diag�2�
���

(J), 2�
���

(J),2, 2�
���

(J)�.

Then we obtain

<Q 42�
���

(J)		z		�#2k
�
		z		�		P=�		 		=		.

So, if condition (7) is satis"ed, the system in the sliding
mode is asymptotically stable. �

Remark 1. In the sliding phase, the designer must select
the minimum eigenvalue of J to satisfy the condition (7).
If this (7) is not satis"ed, one condition (Glazos & Z� ak,
1995, Theorem 1) can guarantee that the system in the
sliding mode is globally uniformly practically stable.

4. The hitting phase design

Now, the modi"ed variable structure controller is se-
lected to be

u"!k
�
�!�k

�
�(t)#k

�
��/		�		!��/		�		, (8)

where �'0 and k
�
, k

�
and k

�
are constant gains, �(t) is

a time function, and all will be designed later. It should be
pointed out that the controller could use only the output
signal. First, to design the function �(t) for (8), we need the
following lemma.

Lemma. Assume C50, r(t), h(t) and g(t) are non-
negative-valued continuous functions. If

r(t)4C#�
�

	

h(�)r(�) d�#�
�

	

g(�) d�,

then

r(t)4C exp� f (t)�#�
�

	

g(�) exp� f (t)!f (�)�d�,

where

f (t)"�
�

	

h(�) d�.

Proof. Let

s(t)"C#�
�

	

h(�)r(�) d�#�
�

	

g(�) d�,

then we have r(t)4s(t). Taking the time derivative of s(t)
yields

s� (t)"h(t)r(t)#g(t)4h(t)s(t)#g(t),

then

�s� (t)!h(t)s(t)� exp�!f (t)�4g(t) exp�!f (t)�.

Since f (t)"��
	
h(�) d�, we have

d

dt
�s(t) exp�!f (t)��4g(t) exp�!f (t)�.

Integrating the above inequality on both sides, we obtain

s(t)4C exp� f (t)�#exp� f (t)��
�

	

g(�) exp�!f (�)�d�,

since r(t)4s(t), so we can show that

r(t)4C exp� f (t)�#�
�

	

g(�) exp� f (t)!f (�)�d�. �

Remark 2. This lemma is a similar case of the Generaliz-
ed Gronwall's Lemma (Hale, 1980).

Recall 		�A		4k
�
and let

		=��A=		4k
�
		=�		 		=		,


�

		=��AB		4k
�
		=�		 		B		,


�
. (9)

Applying the Lemma, we derive the following theorem to
get the function �(t).

Theorem 2. Consider the xrst equation of (5)

z� "(J#=��A=)z#(=�AB#=��AB)�. (10)
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Let �
���

be the maximum eigenvalue of J. Then the follow-
ing two statements hold:

(i) 		exp(Jt)		4k exp(�
���

t) for some k'0.
(ii) 		z		 is bounded by �(t) for all time, where �(t) is the

solution of

�� (t)"��(t)#k(		=�AB		#

�
)		�		, �(0)5k		z(0)		 (11)

with

�"�
���

#k

�
(0.

Proof. Since all the eigenvalues of J are real negative,
condition (i) holds obviously. To see (ii), we solve (10) to
yield

		z(t)		4		e��		 		z(0)		#�
�

	

		e������		 		=��A=z(�)

#(=�AB#=��AB)�		d�

4k exp(�
���

t)		z(0)		

#�
�

	

k exp(�
���

(t!�))		=��A=z(�)

#(=�AB#=��AB)�		d�.

For the above inequality, we multiply the term
exp(!�

���
t) to both sides and using (9), then

		z(t)		 exp(!�
���

t)

4k		z(0)		#�
�

	

k exp (!�
���

�)

�
		z(�)		d�

#�
�

	

k exp(!�
���

�)(		=�AB		#

�
)		�		d�.

Let

r(t)"		z(t)		exp(!�
���

t)

C"k		z(0)		

h(t)"k

�

g(t)"k exp(!�
���

t)(		=�AB		#

�
)		�		

f (t)"�
�

	

h(�) d�"k

�
t.

Applying the Lemma, we obtain

		z(t)		 exp(!�
���

t)

4k		z(0)		 exp(k

�
t)

#�
�

	

k exp(!�
���

�)(		=�AB		#

�
)		�		

�exp(k

�
t!k


�
�) d�.

Shift the term exp(!�
���

t) to the right-hand side for the
above inequality, we have

		z(t)		4k		z(0)		 exp�(�
���

#k

�
)t�

#�
�

	

k exp�(�
���

#k

�
)(t!�)�

�(		=�AB		#

�
)		�		d�

4�(0) exp�(�
���

#k

�
)t�

#�
�

	

k exp�(�
���

#k

�
)(t!�)�

�(		=�AB		#

�
)		�		d�

"�(t), if �(0)5k		z		'0,

where �(t) satis"es (11). Hence, we can see that
�(t)5		z(t)		 for all time, if �(0) is su$ciently large. �

Remark 3. Condition (i) holds because J is a freely
chosen Jordan matrix. Its eigenvalues are all negative
and real. In condition (ii), we must select the maximum
eigenvalues of J, �

���
, to meet the condition �(0.

Remark 4. Examine the controller (8), (2) and (11), we
can know that the controller (8) use only the output
signal indeed.

Now let us discuss the reaching conditions in the
following theorem.

Theorem 3. The mismatched uncertain system (1) under the
controller (8) reach the switching surface �"0 in xnite
time and stay on it thereafter if the constant gains satisfy the
following conditions:

k
�
'		SAB		#k

�
		S		 		B		#k

�
		B		,

k
�
'		SA=		#k

�
		S		 		=		#k

�
		=		,

k
�
'k� . (12)

Proof. Since x"=z#B�, using Theorem 2 we have
		x		4		=		�(t)#		B		 		�		. It follows from (5) and As-
sumption 1 that

���� "��SA=z#��SAB�#��S�A=z

#��S�AB�#��(u#�)

4		SAB		 		�		�#k
�
		S		 		B		 		�		�

#		SA=		 		�		 		z		#k
�
		S		 		=		 		�		 		z		

#(k�#k
�
		x		)		�		#��u. (13)
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Then using the controller in (8) and (12), the inequalities
(13) becomes ���� 4!�		�		. Hence the state trajectory
will reach the switching surface in "nite time and stay on
it thereafter. �

Remark 5. The condition ���� 4!�		�		 is called reach-
ing condition that guarantee the sliding mode. It is easy
to verify that the sliding mode is generated in "nite time
		�(0)		/�. On the other hand, the paper by Heck and
Ferri (1989) proposed output feedback in VSS such that
the system satis"es another reaching condition
���� 4!1. And the sliding mode is generated in "nite
time ��(0)�(0).

5. Conclusions

Some new results of the design of output feedback
controller for a class of uncertain VSS has been de-
veloped in detail. This modi"ed controller use only out-
put variable and no estimated state is required. In the
sliding mode, asymptotic stability of the mismatched
uncertain VSS is assured under certain conditions. Using
some results and a dynamic variable �(t), this new con-
troller extend the stabilization of the output feedback
VSS from matched uncertain case to mismatched uncer-
tain case.
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